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SUMMARY

A new numerical method called high accuracy time and space transform method (TSTM) is introduced to
solve the advection–diffusion equation in an unbounded domain. By a spatial transform, the advection–
diffusion equation in the unbounded domain Rn is converted to one on the bounded domain [−1,1]n ,
and the Laplace transform is applied to eliminate time dependency. The consequent boundary value
problem is solved by collocation on Chebyshev points. To face the well-known computational challenge
represented by the numerical inversion of the Laplace transform, Talbot’s method is applied, consisting of
numerically integrating the Bromwich integral on a special contour by means of trapezoidal or midpoint
rules. Numerical experiments illustrate that TSTM has exponential rate in time and space. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerically solving the advection–diffusion equation in an unbounded domain is of crucial interest
in such different areas as fluid dynamics, geophysics, and plasma physics.

When computing the solution of an advection–diffusion equation in the unbounded domain, one
usually introduces artificial boundaries. In order to limit the computational cost, these boundaries
must be chosen not too far from the domain of interest. Therefore, the boundary conditions must be
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good approximations to the so-called ‘transparent’ boundary condition (i.e. such that the solution
of the problem in the bounded domain is equal to the solution in the original domain). When
artificial boundary conditions are introduced, one must take into consideration two problems: first,
do they lead to a well-posed boundary value problem (BVP)? Second, is the error between the
solutions to the original problem and the resulting BVP as small as possible in the computational
domain? Some papers [1, 2] deal with these problems.

For the advection–diffusion equation in a bounded domain, the finite volume method (FVM)
[3, 4], combined finite element–finite volume method [5, 6], and discontinuous Galerkin method
[7, 8] are widely used. However, for some problems, (e.g. diffusion of a Gaussian hill in uniformly
rotating flow field), a large number of meshes that cover the large computational domain lead to
huge central processing unit (CPU) time, and computational precision is not high [6].

For the time-dependent linear PDE, Runge–Kutta and linear multistep formulas are usually to
be chosen as a time-marching method. The drawback of these methods is error cumulation. The
Laplace transform is a technique proposed early, which removes the time dependency and converts
the problem into a BVP. However, this approach never really became popular in computational
work. The main reason may be that the Laplace transform, particularly its numerical inversion,
has a reputation for being a computational challenge for the fact that the numerical inversion
of the Laplace transform is an ill-posed problem when the transform is known only as a real-
valued function. Recently, Talbot’s method [9] has become a very popular technique for numerical
inversion of the Laplace transform. The technique combines the trapezoid rule or the midpoint rule
with contour integration by using complex arithmetic. The convergence rates for these optimized
quadrature formulas are very fast: roughly O(3−M ) [10], where M is the number of sample points.
Additionally, unlike the traditional time-marching method, an interesting advantage of using the
Laplace transform is that it is easily parallelizable.

Collocation methods based on rational interpolation have been developed by Berrut and his
collaborators [11–13]. The method is based on rational interpolation in barycentric form with
prescribed barycentric weights and transformed Chebyshev points. Berrut and Mittelmann [14]
applied the rational interpolation with tan transform for approximation of functions with a large
gradient in the center of the interval. Their methods required that the underlying problem be
transformed to new coordinates. Tee and Trefethen [15] developed a new rational collocation
method based on a sinh function, which does not require that the underlying problem be transformed
into new coordinates and need not take into consideration singularities of the underlying solution.
They applied the method to the blow-up and moving front problems and achieved high accuracy
results.

It can be seen that in the traditional numerical method to solve an advection–diffusion equation
in the unbounded domain, there exist two difficult points: space discretizion in the unbounded
domain and error cumulation in a time-marching method such as Runge–Kutta and linear multistep
methods.

In this paper, a new numerical method called high accuracy time and space transform method
(TSTM) is introduced to deal with the two difficult points mentioned above. We first introduce a
transform to convert the infinite domain Rn to [−1,1]n , avoiding the artificial boundary conditions
problem. For the transformed equation on [−1,1]n , the rational interpolation in barycentric form
with prescribed barycentric weights and Chebyshev points is applied. For time-dependent linear
PDE, the Laplace transform is used, avoiding error cumulation in the traditional time-marching
method. Numerical experiments show that TSTM has two advantages: the first advantage has
exponential convergence rate in time and space; the second advantage is that a transform to be
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HIGH ACCURACY TIME AND SPACE TRANSFORM METHOD 1289

introduced for the advection–diffusion equation in infinite domain avoids the artificial boundary
problems.

The paper is constructed as follows: in Section 2, a transform is used to convert a class of PDE
in infinite domain Rn to PDE in [−1,1]n . In Section 3, we use the Laplace transform to convert a
class of time-dependent linear PDEs to BVPs. In Section 4, we give a short review of the rational
collocation method based on barycentric formula. In Section 5, we employ Talbot’s method for
the numerical inversion of the Laplace transform. In Section 6, we test one example involving
diffusion of a Gaussian hill. Section 7 gives a brief conclusion.

2. A SPACE TRANSFORM FOR PDE IN THE INFINITE DOMAIN

In this paper, we focus on the two-dimensional time-dependent linear PDE of the form

�u
�t

=a(x, y)
�2u
�x2

+b(x, y)
�2u
�x�y

+c(x, y)
�2u
�y2

+d(x, y)
�u
�x

+e(x, y)
�u
�y

+h(x, y)u

u(x, y,0)=u0(x, y)

lim
r→∞u(x, y, t)=0, r =

√
x2+ y2, (x, y)∈ R2, t ∈(0,+∞) (1)

where a(x, y),b(x, y),c(x, y),d(x, y),e(x, y),h(x, y),u0(x, y) are continuous in R2.
For (1), we introduce the following transform:

�= ex/lx −1

ex/lx +1

�= ey/ly −1

ey/ly +1

(2)

where lx and ly are parameters determined by the underlying problem. Equation (1) can be converted
to the following equation:

�u
�t

= ˜a(�,�)
�2u

��2
+ ˜b(�,�)

�2u
����

+ ˜c(�,�)
�2u
��2

+ ˜d(�,�)
�u
��

+ ˜e(�,�)
�u
��

+ ˜h(�,�)u

u(�,�,0)=u0(�,�) (3)

u|� =0, �=��, �=[−1,1]×[−1,1] (4)

(�,�)∈[−1,1]×[−1,1]
After numerically solving (3)–(4) in the bounded domain, the inversion of the transform

x= lx log

(
1+�

1−�

)
y= ly log

(
1+�

1−�

) (5)

is used to convert the solution of (3)–(4) to the solution in the original domain.
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A similar transform can be presented in 1D and 3D problems; without loss of generality, we
take into consideration the above 2D problem.

3. THE LAPLACE TRANSFORM FOR TIME-DEPENDENT LINEAR PDE

Let u(t) be a piece-wise continuous function of exponential growth on [0,∞). The Laplace
transform û of u is defined by

û(s)=
∫ ∞

0
e−st u(t)dt

To solve the IBVP (3)–(4), we take the Laplace transform of u giving û as the solution to

sû−u0(�,�)= ˜a(�,�)
�2û

��2
+ ˜b(�,�)

�2û
����

+ ˜c(�,�)
�2û
��2

+ ˜d(�,�)
� û
��

+ ˜e(�,�)
� û
��

+ ˜h(�,�)̂u

Defining ˜f (�,�,s)= ˜h(�,�)−s, ˜g(�,�)=−u0(�,�), û satisfies

˜a(�,�)
�2û

��2
+ ˜b(�,�)

�2û
����

+ ˜c(�,�)
�2û
��2

+ ˜d(�,�)
� û
��

+ ˜e(�,�)
� û
��

+ ˜f (�,�,s )̂u= ˜g(�,�) (6)

Similarly, taking the Laplace transform of the boundary conditions gives

û|� =0, �=��, �=[−1,1]×[−1,1] (7)

For numerical purposes, (6)–(7) are solved for a sequence of value of {sn}, and then a numerical
inversion Laplace transform to {̂u(�,�,sn)} is applied.

4. THE RATIONAL COLLOCATION METHOD BASED ON BARYCENTRIC
FORM FOR BVP (6)–(7)

We now introduce the rational collocation method based on barycentric interpolation [11]. The
barycentric form of a rational function pN (x) that interpolates data u0,u1, . . . ,uN at points
x0, x1, . . . , xN is

pN (x)=
∑N

k=0
�k

x−xk
uk∑N

k=0
�k

x−xk

(8)

where �k, k=0, . . . ,N , are called barycentric weights. An advantage of representing a rational
interpolant in barycentric form is the simplicity of its derivatives formulae at x j . The nth derivative

of pN (x) at x j can be expressed as p(n)
N (x j )=∑N

k=0 D
(n)
jk uk . The elements of D(1) and D(2), that
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is, first- and second-order differential matrices, are given by

D(1)
jk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�k

� j (x j −xk)
if j �=k

−∑
i �= j

D(1)
j i if j =k

(9)

D(2)
jk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2D(1)

jk

(
D(1)

j j − 1

x j −xk

)
if j �=k

−∑
i �= j

D(2)
j i if j =k

(10)

When xk =cos(k�/N ) are Chebyshev points of the second kind, �0= 1
2 ,�k =(−1)k,k=

1, . . . ,N−1,�N =(−1)N/2, the above formulae are the differential matrices in the Chebyshev
collocation method [16].

The Lagrange polynomial interpolations can be represented in barycentric form [12], which
are stable and have a special, beautiful symmetry. A rational interpolation can be made from
polynomial interpolation in barycentric form by modifying its points and leaving its barycentric
weights unchanged.

The rational interpolation based on barycentric form with the transformed Chebyshev points
has the following convergence analysis.

Theorem 4.1 (Berrut et al. [11])
Let D1 and D2 be domains in C containing J =[−1,1] and a real interval I , respectively. Let
g :D1→D2 be a conformal map such that g(J )= I . If u :D2→C is a function such that the
composition u◦g :D1→C is analytic inside and on an ellipse E�,�>1, with foci at ±1 and the
sum of its semi-major and semi-minor axes is equal to �. Let PN (x) be the rational function (8)
interpolating u between the transformed Chebyshev points xk =g(cos(k�/N )) with barycentric
weights �0=1/2,�k =(−1)k,k=1, . . . ,N−1,�N =(−1)N/2. Then, for every x ∈[−1,1],

|pN (x)−u(x)|=O(�−N ) (11)

It can be seen from Theorem 4.1 that rational interpolation preserves exponential convergence
when interpolated at transformed Chebyshev points.

For BVP (6)–(7), let the collocation points be

X ={(�k,�l)|k=0, . . . ,N , l=0, . . . ,N }
Define

Ã={ ˜a(�k,�l)}k=0,...,N ;l=0,...,N , B̃={ ˜b(�k,�l)}k=0,...,N ;l=0,...,N

C̃={ ˜c(�k,�l)}k=0,...,N ;l=0,...,N , D̃={ ˜d(�k,�l)}k=0,...,N ;l=0,...,N

Ẽ={ ˜e(�k,�l)}k=0,...,N ;l=0,...,N , F̃={ ˜f (�k,�l ,s)}k=0,...,N ;l=0,...,N

G̃={ ˜g(�k,�l)}k=0,...,N ;l=0,...,N
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By stripping the first-order differential matrix D(1), second-order differential matrix D(2), and
the identity matrices, Ã, B̃, C̃, D̃, Ẽ, F̃, G̃ of their first and last rows, respectively, we obtain
(N−1)×(N−1) matrices D1,D2, I, A, B,C,D,E,F,G. Discretizing the BVP at points (�k,�l)
for k=1, . . . ,N−1, l=1, . . . ,N−1, yields

A◦(D2Û (sn))+B◦(D1Û (sn)D
T
1 )+C ◦(Û (sn)D

T
2 )+D◦(D1Û (sn))

+E ◦(Û (sn)D
T
1 )+F ◦Û (sn)=G (12)

where the unknown Û (sn) is a matrix of size (N−1)×(N−1) with ûk,l(sn) evaluating
û(�k,�l ,sn),k=1, . . . ,N−1, l=1, . . . ,N−1; ◦ denotes the Hadamard product of matrices.
Combining the boundary conditions and solving Equation (12), one can obtain the numerical
solution Û (sn).

5. NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

The Laplace transform represents a very effective tool for solving several problems in the fields of
science and engineering; however, the numerical inversion of the Laplace transform still remains
a difficult problem. In recent years, many results have been obtained in the field of numerical
inversion. Among them, a very accurate and general method is given by Talbot [9]. Talbot’s method
has proved to be applicable both to a wide range of Laplace transform functions and to a wide
range of values of t where we need to compute f (t). In addition, the method has exponential
convergence rate under certain circumstances [10]. In this section, we will apply Talbot’s method
to obtain the approximation of u(�,�, t) based on the sequence {̂u(�,�,sn)}.

The inversion Laplace transform of û is defined by

u(�,�, t)= 1

2�i

∫
B
est û(�,�,s)ds (13)

which is called the Bromwich integral, with B being the Bromwich line Re(s)=�>�0. �0 is the
maximum value of the real part of all singularities of û.

In Talbot’s method, the Bromwich line is deformed into a curve � that begins and ends in the
left half-plane, such that Re(s)→−∞ on the contour. Owing to the exponential factor est , the
integrand decays rapidly on such a contour. Talbot’s contour is parameterized by

� :s(�)=�+�(�cot�+	i�), −����� (14)

where �,�, and 	 are real parameters that determine the geometry of the curve. Both � and 	
are positive. We assume that � lies in the region of analyticity of û. Using the Cauchy Integral
Theorem and (14), the Bromwich integral (13) can be expressed as

u(�,�, t)= 1

2�i

∫
B
est û(�,�,s)ds= 1

2�i

∫ �

−�
es(�)t û(�,�,s(�))s′(�)d� (15)

where s′(�)=�(cot�−�csc2 �+	i). The above integral can be approximated by the trapezoidal
rule or the midpoint rule. Here, we use the midpoint rule with an even number of intervals, say
2M , as used in [9].
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The grid is defined as

�n =(2n+1)
�

2M
, n=−M, . . . ,M−1 (16)

Denote the approximation to (15) by

uM (�,�, t)= 1

2Mi

M−1∑
n=−M

es(�n)t s′(�n )̂u(�,�,s(�n)) (17)

or

uM (�,�, t)= Im

(
1

2M

M−1∑
n=−M

es(�n)t s′(�n )̂u(�,�,s(�n))

)
(18)

If symmetry is used, let sn =s(�n),s′
n =s′(�n); we can obtain the approximation to u(�,�, t), i.e.

uM (�,�, t)= Im

(
1

M

M−1∑
n=0

esnt s′
nû(�,�,sn)

)
(19)

Here, û(�,�,sn) are solved from (12).
It is well known that Talbot’s method (14) with fixed parameters converges at a subgeometric rate

of O(e−c
√
M ); see [9]. Weideman [10] let both � and � be proportional to the ratio M/t ; a geometric

rate O(e−cM ) as M→∞ can be obtained. Moreover, Weideman finds optimal parameters for
Talbot’s method for some problems: when the following Talbot’s contour

� :s(�)= M

t
(−0.2407+0.2378�cot(0.7409�)+0.1349i�) (20)

is used as the Bromwich line, the convergence rate is given by O(e−2.56M ).

6. NUMERICAL EXAMPLE

In this section, we present one example involving diffusion of a Gaussian hill, as studied by Wang
and Liu [6] and Pudykiewicz and Staniforth [17], illustrating our methodology.

The diffusion of a Gaussian hill in a uniformly rotating flow field is controlled by the following
equation:

ut +(−�y)ux +(�x)uy =K (uxx +uyy)

u(x, y,0)= A0 exp

{
−
[
(x−x0)2+(y− y0)2

2�2

]}
(21)

where K and � are constants, −�y and �x are the components of the velocity field that has
a constant positive angular velocity of �=10−5 s−1 about the central point of the plane. For
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the parameters of the experiments, we choose A0=100 units, �2=2×1010, (x0, y0)=(8×105,
16×105), and four different representative values for K , namely,

(i) K =102m2 s−1 (an advection-dominant problem),
(ii) K =104m2 s−1 (as a very stable situation and typical of high-pressure systems),
(iii) K =5×104m2 s−1 (a moderately unstable situation),
(iv) K =7×104m2 s−1 (intensive subgrid-scale mixing).

In an infinite plane, the analytic solution of (21) is given by

u(x, y, t)= A0

1+2Kt/�2
exp

{
−
[

x̃ 2+ ỹ 2

2(�2+2Kt)

]}
(22)

where x̃= x−x0 cos�t+ y0 sin�t and ỹ= y−x0 sin�t− y0 cos�t .
For this problem, parameters lx and ly in transform (2) are set as follows: lx = ly =8×105.

Using transform (2), (21) in infinite plane is converted to a PDE in [−1,1]×[−1,1]. The number
of Chebyshev points is set as N =48 in Section 4. We take M=16 in (19). sn is taken as discussed
in the last section. For each sn , û(�,�,sn) can be obtained as discussed in Section 3; then applying
Talbot’s method, we can obtain the evaluation u(�,�, t), and then using the inversion of the
transform in Section 2, we can obtain the evaluation u(x, y, t).

When assessing the performance of a method, two important criteria are the accuracy and
efficiency. For the numerical experiments, the following terms are used to compare the performance
of the scheme’s accuracy: the error of central value

abs(ue central−un central) (23)

The L2 error norm

‖ue(X)−un(X)‖2
‖ue(X)‖2 (24)

where ue(X) and un(X) are the exact solution and the numerical solution on collocation points,
respectively. The ratios of CPU times of different numerical methods are used to evaluate the
efficiency of the TSTM scheme.

The error of central value compares the error of the numerical and exact solutions at the
maximum value point of the solution; the L2 error norm gives the root-mean-square percent error
of the numerical and exact solutions. The ideal scheme should yield error of central value and L2
error of zero.

Similar to [6, 17], the simulation results after one rotation with K =104, 5×104, and 7×104

are investigated and compared. In addition, the simulation result with K =102 is also given.
The results after one rotation are shown in Table I and in Figures 1–4.
It is necessary to point out that in Table I, the computations using the full FVM and the

discontinuous Galerkin method (DGM) are carried out on a mesh with 9494 triangular cells and
4876 nodes, computations using the combined finite volume–finite element (FV–FE) method are
carried out on a mesh with 14 838 triangular cells and 7580 nodes, whereas computations using
TSTM proposed by this paper are carried out on collocation points N×N (N =48).

It can be seen that from Table I, the accuracy of the method proposed by this paper is superior
to that of the other three schemes. Isolines of the error field (exact solution minus numerical
solution) are symmetric about the central value point, which differs from the FV–FE method, full
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Table I. Central values and errors of the Gaussian hill after one rotation.

K (m2s−1)

Exact
result
(central
value) Scheme Cells

Numerical
result
(central
value)

The error
of central
value L2 error norm

Ratio of
CPU time

1×104 61.414 FV–FE [6] 14 838 63.9 2.5 5.098e−01 0.5510
FVM [6] 9494 55.7 5.7 5.099e−01 0.7494
DG [6] 9494 64.6 3.2 4.1711
TSTM 48×48 61.414 5.781e−06 3.633e−06 1.0

5×104 24.145 FV–FE [6] 14 838 43.6 9.5 7.791e−02 0.2641
FVM [6] 9494 23.7 0.4 7.723e−02 0.6971
DG [6] 9494 42.9 8.8 5.2893
TSTM 48×48 24.145 7.072e−09 8.648e−06 1.0

7×104 18.525 FV–FE [6] 14 838 37.4 8.9 7.303e−02 0.2384
FVM [6] 9494 18.3 0.2 6.372e−02 0.8656
DG [6] 9494 37.1 8.6 4.7608
TSTM 48×48 18.525 2.793e−09 1.496e−05 1.0

1

21 41

6181

0

00
5

5

00
5

2e

5

5

2e 005

Figure 1. With diffusion coefficient K =100. Left part: isolines of the Gaussian hill after one rotation.
Right part: isolines of the error field (exact solution minus numerical solution).

1 1

1121

31 41

51

Figure 2. With diffusion coefficient K =104. Left part: isolines of the Gaussian hill after one rotation.
Right part: isolines of the error field (exact solution minus numerical solution).
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1

1

11

21

23

Figure 3. With diffusion coefficient K =5×104. Left part: isolines of the Gaussian hill after one rotation.
Right part: isolines of the error field (exact solution minus numerical solution).

1

1

6 6

11 16

Figure 4. With diffusion coefficient K =7×104. Left part: isolines of the Gaussian hill after one rotation.
Right part: isolines of the error field (exact solution minus numerical solution).

FVM, and DGM [6]. In addition, ratios of CPU times of different numerical methods show that
the computational cost of TSTM is higher than that of the FV–FE method, full FVM, and lower
than that of DGM. In particular, for larger diffusion coefficients, the computational cost of TSTM
is a little higher than that of the FV–FE method, but there is a larger advantage in accuracy for
TSTM.

The diffusion of a Gaussian hill with diffusion coefficient K =102 is an advection-dominant
problem with a central value=99.376. Numerically solving the case is a more challenging topic;
Wang and Liu [6] and Pudykiewicz and Staniforth [17] did not deal with the case. We apply TSTM
to the case in which the collocation points are also 48×48, the error of central value is 2.639e−05,
and the L2 error norm is 2.357e−05. High precision for the advection-dominant problem is again
gained.

Moreover, simulation results after one rotation with K =102, 104, 5×104, and 7×104 carried
out on collocation points having different point numbers N =20,25,30,35,40,44,48 are shown
in Figure 5, where N are collocation point numbers. In addition, we can see that the method can
achieve exponential convergence rates.
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Figure 5. log10(error) at after 1 rotation for N increase.

7. CONCLUSION

We have presented a very accurate method TSTM that far outperforms the FV–FE method, full
FVM, and DGM for advection–diffusion equation in the infinite domain. It combines ideas from the
existing rational spectral collocation method with the numerical inversion technique of the Laplace
transform using Talbot’s method. We are in the process of investigating further improvements of
this method as well as its application to some advection–diffusion problems with time-dependent
coefficients in the unbounded domain.
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